Theoret. chim. Acta (Berl.) 3, 379—383 (1965)

Commentationes

Research Group for Theoretical Physics, The Hungarian Academy of Sciences, Budapest,
Hungary

On the Connection between the Alternant Molecular Orbital Method
and the Separated-Pair Theory

By

E. Karuy

It is shown that the alternant molecular orbital method. can be entirely fitted into the
separated-pair theory. The total wave function can be taken as a linear combination of anti-
symmetrized product functions constructed of strongly orthogonal geminals. In the single
parameter case, however, these strongly orthogonal geminals cannot be uniquely defined by
the criterion of minimum energy alone. The separated-pair formalism may prove more favor-
able when the one-electron basis is to be extended in order to include, e. g., “vertical” correla-
tion effects.

Es wird gezeigt, dafl die AMO-Methode einen Sonderfall der Methode der Elektronenpaare
darstellt, denn die zugehorige Wellenfunktion kann in eine Linearkombination antisymmetri-
scher Geminalprodukte umgeformt werden. Diese im starken Sinn orthogonalen Geminale sind
jedoch bei nur einem freien Parameter im AMO-Ansatz durch die Bedingung minimaler Ener-
gie nicht vollstindig bestimmt. Der Geminalformalismus kénnte dann Vorteile bieten, wenn
die Einelektronenbasis erweitert werden soll.

On montre que la méthode des orbitales moléculaires alternantes peut étre comprise dans
la théorie des paires séparées. La fonction d’onde totale s’écrit comme combinaison linéaire
de produits antisymétrisés de géminales fortement orthogonales. Cependant, au cas d’un seul
paramétre, ces géminales ne sont pas définies uniquement par le critére d’énergie minimum.
Le formalisme pourrait se montrer avantageux si la base des fonctions monoélectroniques est
étendue pour comprendre, par exemple, la corrélation «verticale.

It is well known that both the separated-pair (SP) theory and the alternant
molecular orbital (AMO) method are equivalent to introducing special configura-
tional interactions. It is not generally known, however, that the AMO method can
be readily fitted into the SP scheme.

In the SP theory [7, &, 9, 15, 17] the total wave function is written in the form

N 1
T:[(22N)!J2;(*“1)ppwl (1,2)w,(3,4) ... on @N—1,2N), (1)

where the geminals yg, K =1,2, ... N, are required to be antisymmetrical,
normalized to unity and mutually orthogonal in the strong sense
Jvk (1, 2)pr (1,3)d7, =0, it K+L. @)

The permutations P interchange electrons between the geminals. As can be shown
the N strongly orthogonal geminals wr (1, 2) lie in mutually perpendicular sub-
spaces of the total Hilbert space [2, 13]. A single geminal product funection of
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type (1) accounts for only N SP correlations. It includes, however, all the corres-
ponding “unlinked” two-electron clusters. The best possible geminals, which can
be determined from integrodifferential equations [10], need not represent pure
spin states nor should they belong to given symmetry species. Making use of
suitable projection operators we can obtain total wave functions of pure spin
state and of given symmetry species. If there are ng (linearly independent) gemi-
nals yrx, k=1, 2, ... ng, in the corresponding subspace, the most general total

N
wave function can be taken as the linear combination of IIng linearly indepen-
K=l

dent functions of type (1) each containing one geminal from every subspace:

A
Y= Z Oab...ngfab...n;
a, b, n

aN

Tab"'n:[@N)l

S 1 Pra 2 pm @4 pra @Y —1,2N). 3

The coefficients Cyp . . . 4 can be determined by minimizing the energy expres-
sion. They are not all independent, however, when ¥ is required to be of pure spin
state and of given symmetry species.

The calculation of the matrix elements of the Hamilton operator is very easy.
As the geminals ygy within every subspace are mutually orthogonal in the usual
sense, non-vanishing matrix elements arise only between functions (3) differing
in not more than two geminals [9, 15].

A linear combination of geminal product functions can account for some many-
electron correlations, too. It allows for all many-electron effects which leave two
electrons in every subspace. The characteristic feature of the SP formalism is
that the number of electrons in every subspace is strictly conserved.

The AMO method [4, 4, 12, 16] is usually applied to “alternant’” systems
containing a half-filled “band”. One starts with the molecular orbitals y,, » =
1,2, ... 2N, of this half-filled “band’” which are mutually orthogonal belonging
to different irreducible representations or to different rows of the same irreducible
representation of the symmetry group of the system.

Combining each MO y, in the lower half of the “band” with its antibonding
MO “pair” y, (usually symmetrically positioned in the upper half of the “band”)
one gets the AMO’s

@K = ¥ €08 Ok + 7, 8in Ox ,
@K = ¥x 008 O — 7, 5in Ok , (4)
K=1,2,...N; 0<0 <m/2.

The antigymmetric total wave function (of a mixed spin state) can be taken in
the form

1
Dy=[2MN)! *deslpragaox ... oy G B FoB - PPl (5)

By using the projection operator 'O defined in [12] we obtain the so-called
parallel-spin singlet component

1§ =100, .
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Minimizing the energy expression calculated with the wave function '@ we get
the best parallel-spin singlet state energy which shows the correct asymptotic
behavior for separated atoms [3]. If the system possesses symmetry the varia-
tional parameters @k may not be all different in order for 1@ to belong to given
symmetry species.

As a consequence of the orthogonality properties of the AMO’s

[k o dv = [ §% §r.dv = dxr,
and

f(}-QE(pL dt = 0gg cos 2 Og = Ag Okr , (6)
we can form N mutually perpendicular subspaces each spanned by the 4 two-
electron functions

_1 A
k=2 (1 +2%)] 2 [fx (1) pr (2) +Fx @) or (V]2 Z[a(1)B2)—x(2)F (1],
vre =12 (1 —23)] 2 [ (1) or 2) —§r (2) ox (112 2 [x(1) B2+« (2) f (1)],
grs =12 (1 —2%)] 2 [Fx (1) gx (2) — ¢ (2) ox ()] & (1) & (2),

pra = [2 (1 —7%)] 2[<PK()99K(2) Px (2) pr (V] 6 (1) B (2

[

(7)
They are antisymmetrical, normalized to unity and represent pure spin states.
The function @, can be put in the form

oy 1L — — —
O~ g D= P PR DTG4 .y GV —1,2),

where

yr = [(1 4 2%)21 * WKl‘L[i—Zz /2] YKz -

The geminals yx are mutually orthogonal in the strong sense and have a
triplet component in addition to the singlet. As the projection operator 10 acts on
the spin functions only it does not mix the two-electron functions of different
subspaces. Hence the parallel-spin singlet function 1@ fits also into the SP frame-
work, namely, it can be represented as the linear combination of functions of type
(3) each containing one two-electron function of the four (7) from every subspace

1P = Z Aab...n’ivab...n, (8)

where
9y 11
Voo .. 0= | gyyi|” 5 (— 1P Pria (1 2)y B, 4) . pan @ N — 1,2 ), (9
and
a,b,...n=1,2,3,4.
The coefficients Ags . , . 4 are all fixed except for a common factor.

It seems now clear that the AMO method is entirely consistent with the SP
theory. The 4N dimensional space of the spin orbitals y.x, .8, %= 1,2, ... 2 N,
is decomposed into N mutually perpendicular subspaces and each of the configura-
tions taken into account has two spin orbitals from every subspace.
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There are many more configurations still consistent with the SP theory which
are left out from the AMO wave function. These can be easily included by the
above geminal product formalism. First we make up all possible singlets by pro-
jection operator techniques or by using directly the CLEBSCH-GORDAN coefficients
which transform the basis functions (9) into a new basis corresponding to the spin
eigenstates [6]. The simplest function is the so-called valence bond singlet which
is just the function ¥, , . . . ;. It shows incorrect asymptotic behavior for separated
atoms, but may be energetically more favourable than @, for finite lattice spacing,
in certain localized systems [3].

Since the 4N functions ¥Yyp . . . » form an orthonormalized set

fg]:b...nTa'b'...n/ dt = Oau Svbr . .. Onmr

the calculation of matrix elements of (spin independent) one- and two-particle
operators is relatively easy. In case of one-particle operators the matrix element
for two different functions (9) always vanishes. For two-particle operators non-
vanishing matrix elements may arise between functions (9) differing in not more
than two two-electron functions [9, 15].

To get the best results for the given basis functions (9) one should mix all the
possible singlets

20D, .

The coefficients ', and the parameters @x have to be determined by minimizing
the energy expression.

We can show now that, when @, = @, = ... = Oy = 6, the strongly ortho-
gonal geminals wgy cannot be uniquely defined by the criterion of minimum energy
alone. Namely, the function @, as a determinant is invariant (except for a phase
factor) under any unitary transformation of the elements. Thus, we can apply a
unitary transformation to the “lower half” MO’s y, — y,, #» = 1,2, ... N. This
change of the orbitals leaves the Hartree-Fock energy and wave function inva-
riant. Applying the same unitary transformation to the “upper half”” MO’s the new
AMO pairs have the form

¢r = 1,008 0 + 7,sin O,

P = yncos @ — y,sin O,
and possess the same orthogonality properties as the old ones. Consequently, the
new geminals ¥, based on the transformed AMO’s are also mutually strongly
orthogonal and can equally well be used for constructing the same total wave
function as the old ones. This result, which is not confined to the AMOQ case,
suggests that inclusion of simple configuration interaction may not always suffice
to define uniquely the strongly orthogonal geminals of the system.

As we have seen the SP theory is just a change of the formalism, it does not
add anything new to the AMO method. This situation may greatly alter, however,
if we want to extend the method in order to include other correlation effects, too.
This involves that we have to complete our one-electron basis functions with MO’s
of higher “bands”. As has been pointed out [11, 18] we should include MO’s
constructed of 3d atomic orbitals in order to take into account the ‘‘vertical”
correlation effects. Whereas the number of the basis functions (4) increases within
every subspace, the total wave function still retains the form of eq. (8).
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LowpiN has pointed out [74] that in the method of different orbitals for
different spins one may choose the orbitals, without loss of generality, so that they
have the same orthogonality properties as the AMO’s. It means that this method
(somewhat more general that the AMO method) can also be fitted in the SP theory.
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