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I t  is shown that the Mternant molecular orbital method can be entirely fitted into the 
separated-pair theory. The totM wave function can be taken as a linear combination of anti- 
symmetrized product functions constructed of strongly orthogonal geminals. In the single 
parameter ease, however, these strongly orthogonal geminals cannot be uniquely defined by 
the criterion of minimum energy alone. The separated-pair formalism may prove more favor- 
able when the one-electron basis is to be extended in order to include, e. g., "vertical" correla- 
tion effects. 

Es wird gezeigt, dab die AM0-Nethode einen Sonderfall der Methode der Elektronenpaare 
darstellt, denn die zugehSrige Welleufunktion kann in eine Linearkombination antisymmetri- 
scher Geminalprodukte umgeformt werden. Diese im starken Sinn orthogonalen Geminale sind 
jedoch bei nur einem freien Parameter im AMO-Ansatz dutch die Bedingung minimaler Ener- 
gie nieht vollst~ndig bestimmt. Der Geminalformalismus kSnnte dann Vorteile bieten, wenn 
die Einelek~ronenbasis erweitert werden soil. 

On montre que la m6thode des orbitales mol6culaires alternantes peut 6tre comprise dans 
la th~orie des paires s@ar@s. La fonction d'onde totale s'6crit comlne combinaison ]in6aire 
de produits antisymgtris6s de g6minales fortement orthogonales. Cependant, au cas d'tm seul 
param~tre, ces g~minales ne sont pas d6finies uniquement par le crit8re d'@ergie minimum. 
Le formalisme pouITait se montrer avantageux si la base des fonctions mono61ectroniques est 
6tendue pour comprendre, par exemple, la eorr61ation ((verticale)). 

I t  is well known t h a t  bo th  the  separa ted-pa i r  (SP) t heo ry  and  the  a l t e rnan t  
molecular  o rb i ta l  (AMO) m e t h o d  are equiva len t  to in t roducing  special configura- 
t iona l  in terac t ions .  I t  is no t  genera l ly  known, however,  t h a t  the  A_gO m e t h o d  can 
be r ead i ly  f i t t ed  in to  the  SP scheme. 

I n  the  SP theo ry  [7, 8, 9, 15, 17] the  t o t a l  wave  funct ion is wr i t t en  in the  form 

~ =  ~ )_2 (-- t)p P~1(I,  2 ) ~ ( 3 , 4 ) . . . t o ~ ( 2 N - - t ,  2 N ) , p  (1) 

where the  geminals  tog, K = t ,  2, . . .  N,  are  requi red  to  be an t i symmetr icM,  
normal ized  to  u n i t y  and  m u t u a l l y  or thogonal  in the  s t rong sense 

I toe (t, 2) ~L (1, 3) d ~1 = 0, ff 2 : ,  L. (2) 

The pe rmuta t i ons  P in terchange  electrons be tween the  geminals.  As can be shown 
the  _N s t rong ly  or thogonal  geminals  ~fK (i ,  2) lie in m u t u a l l y  perpendicu lar  sub- 
spaces of the  t o t a l  H i l b e r t  space [2, 13]. A single geminal  p roduc t  funct ion of 
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type (1) accounts for only N SP correlations, i t  includes, however, all the corres- 
ponding "unlinked" two-electron clusters. The best possible geminals, which can 
be determined from integrodifferential equations [10], need not represent pure 
spin states nor should they belong to given symmetry species. Making use of 
suitable projection operators we can obtain total wave functions of pure spin 
state and of given symmetry species. I f  there are nK (linearly independent) gemi- 
nals ~oK~, k = l, 2 . . . .  rig, in the corresponding subspace, the most general total 

wave function can be taken as the linear combination of IInK linearly indepen- 
K = I  

dent functions of type (i) each containing one geminal from every subspace: 

T =  ~ C~b...~T~b...~, 
a ,  b ,  �9 �9 �9 n 

~Jab�9 [ 2:~ ]�89 �9 . n : [ ( 2 N ) ! J  zT" ( -  i )P P~la ( i ,  2) ~fl2b (3, 4) . . .  ~Nn ( 2 / V - -  l ,  2 N ) .  (3) 

The coefficients Cab... n can be determined by minimizing the energy expres- 
sion. They are not all independent, however, when T is required to be of pure spin 
state and of given symmetry species. 

The calculation of the matrix elements of the Hamilton operator is very easy. 
As the geminals ~Vg~ within every subspace are mutually orthogonal in the usual 
sense, non-vanishing matrix elements arise only between functions (3) differing 
in not more than two geminals [9, 15]. 

A linear combination of geminal product functions can account for some many- 
electron correlations, too. I t  allows for all many-electron effects which leave two 
electrons in every subspaee. The characteristic feature of the SP formalism is 
that  the number of electrons in every subspace is strictly conserved. 

The AMO method [4, 5, 12, 16] is usually applied to "al ternant" systems 
containing a half-filled "band".  One starts with the molecular orbitals g~, ~ = 
t, 2, . . .  2 2V, of this half-filled "band" which are mutually orthogonal belonging 
to different irreducible representations or to different rows of the same irreducible 
representation of the symmetry group of the system�9 

Combining each MO Z~ in the lower half of the "band" with its antibonding 
MO "pair" g~ (usually symmetrically positioned in the upper half of the "band")  
one gets the AMO's 

~0g ---- Z~ cos OK + "~,~ sin OK, 

6K = Z- COS OK-- Z~ sin OK, (4) 

K =  1,2, . . .  N; 0_< 0_< ~/2.  

The antisymmetric total wave function (of a mixed spin state) can be taken in 
the form 

1 

~o = [(2 N)!]-~ des [ ~  a ~2 ~ . . .  9a  ~ @~ fi ~2 fi . . .  @~ fi]- (5) 

By using the projection operator 10 defined in [12] we obtain the so-called 
parallel-spin singlet component 

lq~ = 10 ~0 .  
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Minimizing the energy expression calculated with the wave function ~ we get 
the best parallel-spin singlet state energy which shows the correct asymptotic 
behavior for separated atoms [3]. I f  the system possesses symmetry the varia- 
tional parameters OK may not be all different in order for 1~ to belong to given 
symmetry species. 

As a consequence of the orthogonaHty properties of the A1KO's 

and 
- $  

~ L  d~ = ~ L  cos 2 OK = A~ (~:L, (6) 

we can form N mutually perpendicular subspaces each spanned by the 4 two- 
electron functions 

i 

~ = [2 (i + ~ 1 ]  - ~  [@~ (1) ~ (2) + ~ (2) ~ (1)] 2 
- L  

~VK2 = [2 ( i - -A~)]  ~" [~K (1) ~K (2)--  ~K (2) ~VK (t)] 2 
1 

_ !  

[~ (i) ~ ( 2 ) -  ~ (2) ~ ( i ) ] ,  
1 

[~(i)  ~ ( 2 ) +  ~ (21/~ ( l ) ] ,  

[ ~  (l) ~K (2) - -  @K (2) ~K (l)] ~ (1) ~ (2), 

[~K (i) ~K (2) - -  @~ (2) ~ (l)] # (l) ~ (2). 

(7) 

They are antisymmetrical, normalized to unity and represent pure spin states. 
The function ~0 can be put  in the form 

r  ~(--I)~PWl(i, 2)~2(3,4)...~x(2N--t, 2N), 
where 

1 1 

The geminals ~K are mutually orthogonal in the strong sense and have a 
triplet component in addition to the singlet. As the projection operator 10 acts on 
the spin functions only it does not mix the two-electron functions of different 
subspaces. Hence the parallel-spin singlet function 1~ fits also into the SP frame- 
work, namely, it can be represented as the linear combination of functions of type 
(3) each containing one two-electron function of the four (7) from every subspace 

iqS= ~ A ~ b . . . n T ~ b . . . n ,  (8) 
a, b , , . ,  n 

where 

T o b . . .  ~ -- [ (~K-'  J ~ ( -  l)v P ~1~ (l, 2) ~2~ (3, 4) . . .  ~ (2 ;V-- i, 2 N), (9) 

and 
a , b ,  . . .  n =  l, 2 , 3 , 4 .  

The coefficients A a ~ . . .  n are all fixed except for a common factor. 
I t  seems now clear that  the AMO method is entirely consistent with the SP 

theory. The 4N dimensional space of the spin orbitals Z~ ,  Z~#, ~ = l, 2, . . .  2 N, 
is decomposed into N mutually perpendicular subspaccs and each of the configura- 
tions taken into account has two spin orbitals from every subspace. 

28* 
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There are many  more configurations still consistent with the SP theory which 
are left'~out from the AM0 wave function. These can be easily included by the 
above geminal product formalism. First we make up all possible singlets by pro- 
jection operator techniques or by  using directly the CLEBSc~-Go~DA~ coefficients 
which transtbrm the basis functions (9) into a new basis corresponding to the spin 
eigenstates [6]. The simplest function is the so-called valence bond singlet which 
is just the function ~gi i �9 �9 �9 i. I t  shows incorrect asymptotic behavior for separated 
atoms, but  may  be energetically more favourable than i r  for finite lattice spacing, 
in certain localized systems [3]. 

Since the 4 N functions T a b . . .  n form an orthonormalized set 

l T % .  �9 �9 ~ T ~ ,  b . . . .  n,  dT = dam, d ~  . . . .  ~ n ~ ,  , 

the calculation of matrix elements of (spin independent) one- and two-particle 
operators is relatively easy. In  case of one-particle operators the matr ix  element 
for two different functions (9) always vanishes. For two-particle operators non- 
vanishing matr ix  elements may  arise between functions (9) differing in not more 
than two two-electron functions [9, 15]. 

To get the best results for the given basis functions (9) one should mix all the 
possible singlets 

c~ 

The coefficients C~ and the parameters OK have to be determined by  minimizing 
the energy expression. 

We can show now that,  when O i = O 2 . . . . .  Oiv = O, the strongly ortho- 
gonal geminals V/;~ cannot be uniquely defined by the criterion of minimum energy 
alone. Namely, the function q~0 as a determinant is invariant (except for a phase 
factor) under any unitary transformation of the elements. Thus, we can apply a 
unitary transformation to the "lower half" IV[O's Z~. -~ Z'~, ~ = 1, 2, . . .  hr. This 
change of the orbitals leaves the Hartree-Foek energy and wave function inva- 
riant. Applying the same unitary transformation to the "upper half" MO's the new 
AM0 pairs have the form 

I I - - I  �9 

~0~ = Z~ cos 0 + ~ sin 0 ,  
- !  I - - I  �9 

~K = g~ cos O - g~ sin O 

and possess the same orthogonality properties as the old ones. Consequently, the 
f new geminals F~e based on the transformed AMO's are also mutual ly strongly 

orthogonal and can equally well be used for constructing the same total  wave 
function as the old ones. This result, which is not confined to the AiKO case, 
suggests tha t  inehision of simple configuration interaction may  not always suffice 
to define uniquely the strongly orthogonal geminals of the system. 

As we have seen the SP theory is just a change of the formalism, it does not 
add anything new to the AMO method. This situation may  greatly alter, however, 
ff we want to extend the method in order to include other correlation effects, too. 
This involves tha t  we have to complete our one-electron basis functions with MO's 
of higher "bands".  As has been pointed out [11, 18] we should include MO's 
constructed of 3d atomic orbitals in order to take into account the "vertieM" 
correlation effects. Whereas the number of the basis functions (4) increases within 
every subspaee, the total  wave function still retains the form of eq. (8). 
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L6wm~r has po in ted  out  [H]  t h a t  in the  m e t h o d  of  different  orbi ta ls  for  
different  spins one m a y  choose the  orbi tals ,  wi thou t  loss of  general i ty ,  so t h a t  t h e y  
have  the  same o r thogona l i ty  proper t ies  as the  AMO's.  I t  means  t h a t  this  m e t h o d  
(somewhat  more general  t h a t  the  ASiO method)  can also be f i t ted  in the  SP theory .  
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